
Algorithms & Data Structure I

Syrian Private University

Instructor: Dr. Mouhib Alnoukari



Asymptotic Analysis

التحليل التقاربي



Asymptotic Analysis

Outline:

we will look at:

– Justification for analysis

– Quadratic and polynomial growth

– Landau symbols

– Big-Q as an equivalence relation

– Little-o as a weak ordering



Background

Suppose we have two algorithms, how can we tell which 

is better?

We could implement both algorithms, run them both

– Expensive and error prone

Preferably, we should analyze them mathematically

– Algorithm analysis



Quadratic Growth

Consider the two functions

f(n) = n2 and g(n) = n2 – 3n + 2

Around n = 0, they look very different



Quadratic Growth

Yet on the range n = [0, 1000], they are 

(relatively) indistinguishable:



Quadratic Growth

The absolute difference is large, for example,

f(1000) = 1 000 000

g(1000) =   997 002

but the relative difference is very small

and this difference goes to zero as n → ∞

0.3%0.002998
)1000f(

)1000g()1000f(






Polynomial Growth

To demonstrate with another example,

f(n) = n6 and    g(n) = n6 – 23n5+193n4 –729n3+1206n2 – 648n

Around n = 0, they are very different



Polynomial Growth

Still, around n = 1000, the relative difference is 

less than 3%



Polynomial Growth

The justification for both pairs of polynomials 
being similar is that, in both cases, they each 
had the same leading term:

n2 in the first case, n6 in the second

Suppose however, that the coefficients of the 
leading terms were different
– In this case, both functions would exhibit the 

same rate of growth, however, one would always 
be proportionally larger



Asymptotic Analysis

• Goal: to simplify analysis of running time by getting 
rid of ”details”, which may be affected by specific 
implementation and hardware 

– like “rounding”: 1,000,001  1,000,000

– 3n2  n2

• Capturing the essence: how the running time of an 
algorithm increases with the size of the input in the 
limit.

– Asymptotically more efficient algorithms are best for all 
but small inputs 



Asymptotic Analysis

Given an algorithm:
– We need to be able to describe these values 

mathematically

– We need a systematic means of using the description 
of the algorithm together with the properties of an 
associated data structure

– We need to do this in a machine-independent way

For this, we need Landau symbols and the 
associated asymptotic analysis



Asymptotic Notation - Landau Symbols

• The “big-Oh” O-Notation
– asymptotic upper bound

– f(n) = O(g(n)), if there exists 
constants c and n0, s.t. f(n)  c g(n)
for n  n0

– f(n) and g(n) are functions over 
non-negative integers

• Used for worst-case analysis
• The function f(n) has a rate of 

growth no greater than that of g(n)

)(nf
( )c g n

0n Input Size

R
u

n
n

in
g 

Ti
m

e



• The “big-Omega” WNotation
– asymptotic lower bound

– f(n) = W(g(n)) if there exists 
constants c and n0, s.t. c g(n)  f(n) 
for n  n0

• Used to describe best-case 
running times or lower bounds 
of algorithmic problems
– E.g., lower-bound of searching in 

an unsorted array is W(n). Input Size

R
u

n
n

in
g 

Ti
m

e

)(nf

( )c g n

0n

Asymptotic Notation (2)



Asymptotic Notation (3)

• Simple Rule: Drop lower order terms and 
constant factors.

– 50 n log n is O(n log n)

– 7n - 3 is O(n)

– 8n2 log n + 5n2 + n is O(n2 log n)

• Note: Even though (50 n log n) is O(n5), it is 
expected that such an approximation be of as 
small an order as possible



• The “big-Theta” QNotation
– asymptoticly tight bound

– f(n) = Q(g(n)) if there exists 
constants c1, c2, and n0, s.t. c1

g(n)  f(n)  c2 g(n) for n  n0

• f(n) = Q(g(n)) if and only if f(n)
= O(g(n))  and f(n) = W(g(n))

• O(f(n)) is often misused instead 
of Q(f(n))

• The function f(n) has a rate of 
growth equal to that of g(n)

Input Size

R
u

n
n

in
g 

Ti
m

e

)(nf

0n

Asymptotic Notation (4)

)(ngc 2

)(ngc 1



By choosing c1=1/14, c2=1/2 and n0=7.

QNotation: Exercise

We must determine positive constants c1, c2, and n0 :

Suppose for the purpose of contradiction that c2, and n0 exists such that:
for all               . Dividing by n2 yields:
Which cannot possibly hold for arbitrarily large n, since c2 is constant. 



Asymptotic Notation (5)

• Two more asymptotic notations

– "Little-Oh" notation f(n)=o(g(n))
non-tight analogue of Big-Oh

• For every c, there should exist n0 , s.t. f(n)  c g(n) for n  n0

• Used for comparisons of running times. If f(n)=o(g(n)), it is said 
that g(n) dominates f(n).

”Big-Oh" : For some c, there should exist n0 , s.t. f(n)  c g(n) for n  n0

– "Little-omega" notation f(n)=w(g(n))
non-tight analogue of Big-Omega



Asymptotic Notation (6)

• Analogy with real numbers

– f(n) = O(g(n)) @ f g

– f(n) = W(g(n)) @ f  g

– f(n) = Q(g(n)) @ f g

– f(n) = o(g(n)) @ f g

– f(n) = w(g(n)) @ f g

• Abuse of notation: f(n) = O(g(n)) actually 
means f(n) O(g(n)) 



Landau Symbols

Graphically, we can summarize these as follows:

We say

if



Landau Symbols

Some other observations we can make 

are:

f(n) = Q(g(n)) ⇔ g(n) = Q(f(n))

f(n) = O(g(n)) ⇔ g(n) = W(f(n))

f(n) = o(g(n)) ⇔ g(n) = w(f(n))



Big-Q as an Equivalence Relation

If we look at the first relationship, we notice that
f(n) = Q(g(n)) seems to describe an equivalence 
relation:

1.   f(n) = Q(g(n)) if and only if g(n) = Q(f(n))

2.   f(n) = Q(f(n))

3.   If f(n) = Q(g(n)) and g(n) = Q(h(n)), it follows that 
f(n) = Q(h(n))

Consequently, we can group all functions into 
equivalence classes, where all functions within 
one class are big-theta Q of each other



Big-Q as an Equivalence Relation

For example, all of

n2 100000 n2 – 4 n + 19             n2 + 1000000

323 n2 – 4 n ln(n) + 43 n + 10                    42n2 + 32

n2 + 61 n ln2(n) + 7n + 14 ln3(n) + ln(n)

are big-Q of each other

E.g., 42n2 + 32 = Q( 323 n2 – 4 n ln(n) + 43 n + 10 )



Big-Q as an Equivalence Relation

The most common classes are given names:

Q(1) constant

Q(ln(n)) logarithmic

Q(n) linear

Q(n ln(n)) “n log n”

Q(n2) quadratic

Q(n3) cubic

2n, en, 4n, ... exponential



Logarithms and Exponentials

Recall that all logarithms are scalar multiples of each 
other
– Therefore logb(n)= Q(ln(n)) for any base b

Alternatively, there is no single equivalence class for 
exponential functions:
– If 1 < a < b, 

– Therefore an = o(bn)

However, we will see that it is almost universally 
undesirable to have an exponentially growing function!

0limlim 











n

nn

n

n b

a

b

a



Logarithms and Exponentials

Plotting 2n, en, and 4n on the range [1, 10]

already shows how significantly different 

the functions grow

Note:

210 =         1024

e10 ≈      22 026

410 = 1 048 576



Little-o as a Weak Ordering

We can show that, for example

ln( n ) = o( np )

for any p > 0

Proof:  Using l’Hôpital’s rule, we have

Conversely, 1 = o(ln( n ))

0lim
11

lim
/1

lim
)ln(

lim
1

 



p

npnpnpn
n

ppnpn

n

n

n



Little-o as a Weak Ordering

Other observations:
– If p and q are real positive numbers where p < q, it 

follows that

np = o(nq)

– For example, matrix-matrix multiplication is Q(n3)
but a refined algorithm is Q(nlg(7)) where lg(7) ≈  
2.81

– Also, np = o(ln(n)np), but ln(n)np = o(nq)
• np has a slower rate of growth than ln(n)np, but

• ln(n)np has a slower rate of growth than nq for p < q



Little-o as a Weak Ordering

If we restrict ourselves to functions f(n) 
which are Q(np) and Q(ln(n)np), we note:

– It is never true that f(n) = o(f(n))

– If f(n) ≠ Q(g(n)), it follows that either 

f(n) = o(g(n)) or g(n) = o(f(n))

– If f(n) = o(g(n)) and g(n) = o(h(n)), it follows that 
f(n) = o(h(n))

This defines a weak ordering!



Little-o as a Weak Ordering

Graphically, we can shown this 

relationship by marking these against the 

real line



Algorithms Analysis

We will use Landau symbols to describe the complexity of 
algorithms
– E.g., adding a list of n doubles will be said to be a Q(n) algorithm

An algorithm is said to have polynomial time complexity if its 
run-time may be described by O(nd) for some fixed d ≥ 0
– We will consider such algorithms to be efficient

Problems that have no known polynomial-time algorithms are 
said to be intractable
– Traveling salesman problem:  find the shortest path that visits n

cities

– Best run time:  Q(n2 2n)



Algorithm Analysis

In general, you don’t want to implement exponential-time or 

exponential-memory algorithms

– Warning:  don’t call a quadratic curve “exponential”, 

either...please



Exercises



Exercises



Exercises



Exercises



Exercises



Exercises



Exercises

1- Let processing time of an algorithm of Big-Oh complexity O(f(n)) be 
directly proportional to f(n). Let three such algorithms A, B, and C 
have time complexity O(n2), O(n1.5), and O(n log n), respectively. 
During a test, each algorithm spends 10 seconds to process 100 data 
items. Derive the time each algorithm should spend to process 10,000 
items.

2- Software packages A and B have processing time exactly TEP = 3n1.5

and TWP = 0.03n1.75, respectively. If you are interested in faster 
processing of up to n = 108 data items, then which package should be 
choose?



Exercises

1- Let processing time of an algorithm of Big-Oh complexity O(f(n)) be 
directly proportional to f(n). Let three such algorithms A, B, and C 
have time complexity O(n2), O(n1.5), and O(n log n), respectively. 
During a test, each algorithm spends 10 seconds to process 100 data 
items. Derive the time each algorithm should spend to process 10,000 
items.



Exercises

2- Software packages A and B have processing time exactly TEP = 3n1.5

and TWP = 0.03n1.75, respectively. If you are interested in faster 
processing of up to n = 108 data items, then which package should be 
choose?


