SFí

Syrian Private University

Algorithms \& Data Structure I

Instructor: Dr. Mouhib Alnoukari

Asymptotic Analysis

التحليل التقاربي

Asymptotic Analysis

Outline:

we will look at:

- Justification for analysis
- Quadratic and polynomial growth
- Landau symbols
- Big- Θ as an equivalence relation
- Little-o as a weak ordering

Background

Suppose we have two algorithms, how can we tell which is better?

We could implement both algorithms, run them both

- Expensive and error prone

Preferably, we should analyze them mathematically

- Algorithm analysis

Quadratic Growth

Consider the two functions

$$
\mathrm{f}(n)=n^{2} \text { and } \mathrm{g}(n)=n^{2}-3 n+2
$$

Around $n=0$, they look very different

Quadratic Growth

Yet on the range $n=[0,1000]$, they are (relatively) indistinguishable:

Quadratic Growth

The absolute difference is large, for example,

$$
\begin{aligned}
& \mathrm{f}(1000)=1000000 \\
& \mathrm{~g}(1000)=997002
\end{aligned}
$$

but the relative difference is very small

$$
\left|\frac{\mathrm{f}(1000)-\mathrm{g}(1000)}{\mathrm{f}(1000)}\right|=0.002998<0.3 \%
$$

and this difference goes to zero as $n \rightarrow \infty$

Polynomial Growth

To demonstrate with another example,

$$
\mathrm{f}(n)=n^{6} \quad \text { and } \quad \mathrm{g}(n)=n^{6}-23 n^{5}+193 n^{4}-729 n^{3}+1206 n^{2}-648 n
$$

Around $n=0$, they are very different

Polynomial Growth

Still, around $n=1000$, the relative difference is less than 3\%

Polynomial Growth

The justification for both pairs of polynomials being similar is that, in both cases, they each had the same leading term:
n^{2} in the first case, n^{6} in the second
Suppose however, that the coefficients of the leading terms were different

- In this case, both functions would exhibit the same rate of growth, however, one would always be proportionally larger

Asymptotic Analysis

- Goal: to simplify analysis of running time by getting rid of "details", which may be affected by specific implementation and hardware
- like "rounding": 1,000,001 $\approx 1,000,000$
$-3 n^{2} \approx n^{2}$
- Capturing the essence: how the running time of an algorithm increases with the size of the input in the limit.
- Asymptotically more efficient algorithms are best for all but small inputs

Asymptotic Analysis

Given an algorithm:

- We need to be able to describe these values mathematically
- We need a systematic means of using the description of the algorithm together with the properties of an associated data structure
- We need to do this in a machine-independent way

For this, we need Landau symbols and the associated asymptotic analysis

Asymptotic Notation - Landau Symbols

- The "big-Oh" O-Notation
- asymptotic upper bound
$-f(n)=O(g(n))$, if there exists constants c and n_{0}, s.t. $\mathbf{f}(\mathbf{n}) \leq \mathbf{c} \mathbf{g}(\mathbf{n})$ for $n \geq n_{0}$
$-f(n)$ and $g(n)$ are functions over non-negative integers
- Used for worst-case analysis

- The function $\mathrm{f}(n)$ has a rate of growth no greater than that of $g(n)$

Asymptotic Notation (2)

- The "big-Omega" Ω-Notation
- asymptotic lower bound
$-f(n)=\Omega(g(n))$ if there exists constants c and n_{0} s.t. $\mathbf{c} \mathbf{g}(\mathbf{n}) \leq \mathrm{f}(\mathbf{n})$ for $n \geq n_{0}$
- Used to describe best-case running times or lower bounds of algorithmic problems
- E.g., lower-bound of searching in an unsorted array is $\Omega(n)$.

Asymptotic Notation (3)

- Simple Rule: Drop lower order terms and constant factors.
$-50 n \log n$ is $O(n \log n)$
$-7 n-3$ is $\mathrm{O}(n)$
$-8 n^{2} \log n+5 n^{2}+n$ is $O\left(n^{2} \log n\right)$
- Note: Even though (50 $n \log n$) is $O\left(n^{5}\right)$, it is expected that such an approximation be of as small an order as possible

Asymptotic Notation (4)

- The "big-Theta" Θ-Notation
- asymptoticly tight bound
$-f(n)=\Theta(g(n))$ if there exists constants c_{1}, c_{2}, and n_{0}, s.t. \mathbf{c}_{1} $\mathbf{g}(\mathbf{n}) \leq \mathbf{f}(\mathrm{n}) \leq \mathbf{c}_{\mathbf{2}} \mathbf{g}(\mathrm{n})$ for $n \geq n_{0}$
- $f(n)=\Theta(g(n))$ if and only if $f(n)$ $=O(g(n))$ and $f(n)=\Omega(g(n))$
- $O(f(n))$ is often misused instead of $\Theta(f(n))$
- The function $\mathrm{f}(n)$ has a rate of
 growth equal to that of $g(n)$

$\Theta-$ Notation: Exercise

$$
\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)
$$

We must determine positive constants c_{1}, c_{2}, and n_{0} :

$$
\begin{aligned}
& c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2} \\
& \text { for all } n \geq n_{0} \text {. Dividing by } n^{2} \text { yields } \\
& c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2} .
\end{aligned}
$$

By choosing $c_{1}=1 / 14, c_{2}=1 / 2$ and $n_{0}=7$.

$$
6 n^{3} \neq \Theta\left(n^{2}\right)
$$

Suppose for the purpose of contradiction that c_{2}, and n_{0} exists such that: $6 n^{3} \leq c_{2} n^{2}$ for all $n \geq n_{0}$. Dividing by n^{2} yields: $n \leq c_{2} / 6$ Which cannot possibly hold for arbitrarily large n, since c_{2} is constant.

Asymptotic Notation (5)

- Two more asymptotic notations
- "Little-Oh" notation $f(n)=o(g(n))$ non-tight analogue of Big-Oh
- For every c, there should exist n_{0}, s.t. $\mathbf{f (n)} \leq \mathbf{c} \mathbf{g}(\mathbf{n})$ for $n \geq n_{0}$
- Used for comparisons of running times. If $f(n)=o(g(n))$, it is said that $g(n)$ dominates $f(n)$.
"Big-Oh" : For some c, there should exist n_{0}, s.t. $\mathbf{f}(\mathbf{n}) \leq \mathbf{c g}(\mathbf{n})$ for $n \geq n_{0}$
- "Little-omega" notation $f(n)=\omega(g(n))$ non-tight analogue of Big-Omega

Asymptotic Notation (6)

- Analogy with real numbers

$$
\begin{array}{ll}
-f(n)=O(g(n)) \cong & f \leq g \\
-f(n)=\Omega(g(n)) \cong & f \geq g \\
-f(n)=\Theta(g(n)) \cong & f=g \\
-f(n)=o(g(n)) \cong & f<g \\
-f(n)=\omega(g(n)) \cong & f>g
\end{array}
$$

- Abuse of notation: $f(n)=O(g(n))$ actually means $f(n) \in O(g(n))$

Landau Symbols

Graphically, we can summarize these as follows:
We say

$$
\mathrm{f}(n)=\begin{gathered}
\mathbf{O}(\mathrm{g}(n)) \quad \Omega(\mathrm{g}(n)) \\
\mathbf{o}(\mathrm{g}(n)) \quad \Theta(\mathrm{g}(n)) \quad \omega(\mathrm{g}(n))
\end{gathered}
$$

if

$$
\lim _{n \rightarrow \infty} \frac{\mathrm{f}(n)}{\mathrm{g}(n)}=0 \quad 0<\mathrm{c}<\infty \quad \infty
$$

Landau Symbols

Some other observations we can make are:

$$
\begin{aligned}
& \mathrm{f}(n)=\Theta(\mathrm{g}(n)) \Leftrightarrow \mathrm{g}(n)=\Theta(\mathrm{f}(n)) \\
& \mathrm{f}(n)=\mathbf{O}(\mathrm{g}(n)) \Leftrightarrow \mathrm{g}(n)=\Omega(\mathrm{f}(n)) \\
& \mathrm{f}(n)=\mathbf{o}(\mathrm{g}(n)) \Leftrightarrow \mathrm{g}(n)=\omega(\mathrm{f}(n))
\end{aligned}
$$

Big- Θ as an Equivalence Relation

If we look at the first relationship, we notice that $\mathrm{f}(n)=\Theta(\mathrm{g}(n))$ seems to describe an equivalence relation:

$$
\begin{aligned}
& \text { 1. } \mathrm{f}(n)=\Theta(\mathrm{g}(n)) \text { if and only if } \mathrm{g}(n)=\Theta(\mathrm{f}(n)) \\
& \text { 2. } \mathrm{f}(n)=\Theta(\mathrm{f}(n))
\end{aligned}
$$

3. If $\mathrm{f}(n)=\Theta(\mathrm{g}(n))$ and $\mathrm{g}(n)=\Theta(\mathrm{h}(n))$, it follows that $\mathrm{f}(n)=\Theta(\mathrm{h}(n))$

Consequently, we can group all functions into equivalence classes, where all functions within one class are big-theta Θ of each other

Big- Θ as an Equivalence Relation

For example, all of

$$
\begin{array}{lrr}
n^{2} & 100000 n^{2}-4 n+19 & n^{2}+1000000 \\
323 n^{2}-4 n \ln (n)+43 n+10 & 42 n^{2}+32
\end{array}
$$

$$
n^{2}+61 n \ln ^{2}(n)+7 n+14 \ln ^{3}(n)+\ln (n)
$$

are big- Θ of each other
E.g., $42 n^{2}+32=\Theta\left(323 n^{2}-4 n \ln (n)+43 n+10\right)$

Big- Θ as an Equivalence Relation

The most common classes are given names:

$\Theta(1)$	constant
$\Theta(\ln (n))$	logarithmic
$\Theta(n)$	linear
$\Theta(n \ln (n))$	" $n \log n "$
$\Theta\left(n^{2}\right)$	quadratic
$\Theta\left(n^{3}\right)$	cubic
$2^{n}, e^{n}, 4^{n}, \ldots$	exponential

Logarithms and Exponentials

Recall that all logarithms are scalar multiples of each other

- Therefore $\log _{b}(n)=\boldsymbol{\Theta}(\ln (n))$ for any base b

Alternatively, there is no single equivalence class for exponential functions:

- If $1<a<b$,

$$
\lim _{n \rightarrow \infty} \frac{a^{n}}{b^{n}}=\lim _{n \rightarrow \infty}\left(\frac{a}{b}\right)^{n}=0
$$

- Therefore $a^{n}=\mathbf{o}\left(b^{n}\right)$

However, we will see that it is almost universally undesirable to have an exponentially growing function!

Logarithms and Exponentials

Plotting $2^{n}, e^{n}$, and 4^{n} on the range $[1,10]$ already shows how significantly different the functions s $1 \times x w^{6}$

Note:
$2^{10}=\quad 1024$
$e^{10} \approx 22026$
$4^{10}=1048576$

Little-o as a Weak Ordering

We can show that, for example

$$
\ln (n)=\mathbf{o}\left(n^{p}\right)
$$

for any $p>0$

Proof: Using l'Hôpital's rule, we have

$$
\lim _{n \rightarrow \infty} \frac{\ln (n)}{n^{p}}=\lim _{n \rightarrow \infty} \frac{1 / n}{p n^{p-1}}=\lim _{n \rightarrow \infty} \frac{1}{p n^{p}}=\frac{1}{p} \lim _{n \rightarrow \infty} n^{-p}=0
$$

Conversely, $1=\mathbf{o}(\ln (n))$

Little-o as a Weak Ordering

Other observations:

- If p and q are real positive numbers where $p<q$, it follows that

$$
n^{p}=\mathbf{o}\left(n^{q}\right)
$$

- For example, matrix-matrix multiplication is $\Theta\left(n^{3}\right)$ but a refined algorithm is $\Theta\left(n^{\lg (7)}\right)$ where $\lg (7) \approx$ 2.81
- Also, $n^{p}=\mathbf{o}\left(\ln (n) n^{p}\right)$, but $\ln (n) n^{p}=\mathbf{o}\left(n^{q}\right)$
- n^{p} has a slower rate of growth than $\ln (n) n^{p}$, but
- $\ln (n) n^{p}$ has a slower rate of growth than n^{q} for $p<q$

Little-o as a Weak Ordering

If we restrict ourselves to functions $\mathrm{f}(n)$ which are $\Theta\left(n^{p}\right)$ and $\Theta\left(\ln (n) n^{p}\right)$, we note:

- It is never true that $\mathrm{f}(n)=\mathbf{o}(\mathrm{f}(n))$
- If $\mathrm{f}(n) \neq \Theta(\mathrm{g}(n))$, it follows that either

$$
\mathrm{f}(n)=\mathbf{o}(\mathrm{g}(n)) \text { or } \mathrm{g}(n)=\mathbf{o}(\mathrm{f}(n))
$$

- If $\mathrm{f}(n)=\mathbf{o}(\mathrm{g}(n))$ and $\mathrm{g}(n)=\mathbf{o}(\mathrm{h}(n))$, it follows that $\mathrm{f}(n)=\mathbf{o}(\mathrm{h}(n))$

This defines a weak ordering!

Little-o as a Weak Ordering

Graphically, we can shown this relationship by marking these against the real line

Algorithms Analysis

We will use Landau symbols to describe the complexity of algorithms

- E.g., adding a list of n doubles will be said to be a $\Theta(n)$ algorithm

An algorithm is said to have polynomial time complexity if its run-time may be described by $\mathrm{O}\left(n^{d}\right)$ for some fixed $d \geq 0$

- We will consider such algorithms to be efficient

Problems that have no known polynomial-time algorithms are said to be intractable

- Traveling salesman problem: find the shortest path that visits n cities
- Best run time: $\Theta\left(n^{2} 2^{n}\right)$

Algorithm Analysis

In general, you don't want to implement exponential-time or exponential-memory algorithms

- Warning: don't call a quadratic curve "exponential", either...please

Exercises

Expression	Dominant term(s)	$O(\ldots)$
$5+0.001 n^{3}+0.025 n$		
$500 n+100 n^{1.5}+50 n \log _{10} n$		
$0.3 n+5 n^{1.5}+2.5 \cdot n^{1.75}$		

Expression	Dominant term(s)	$O(\ldots)$
$5+0.001 n^{3}+0.025 n$	$0.001 n^{3}$	$O\left(n^{3}\right)$
$500 n+100 n^{1.5}+50 n \log _{10} n$	$100 n^{1.5}$	$O\left(n^{1.5}\right)$
$0.3 n+5 n^{1.5}+2.5 \cdot n^{1.75}$	$2.5 n^{1.75}$	$O\left(n^{1.75}\right)$

Exercises

Statement	Is it TRUE or FALSE?	If it is FALSE then write the correct formula
Rule of sums: $O(f+g)=O(f)+O(g)$		
Rule of products: $O(f \cdot g)=O(f) \cdot O(g)$		
Transitivity: if $g=O(f)$ and $h=O(f)$ then $g=O(h)$		

Exercises

Statement	Is it TRUE or FALSE?	If it is FALSE then write the correct formula
Rule of sums: $O(f+g)=O(f)+O(g)$	FALSE	$O(f+g)=$ $\max \{O(f), O(g)\}$
Rule of products: $O(f \cdot g)=O(f) \cdot O(g)$	TRUE	
Transitivity: if $g=O(f)$ and $h=O(f)$ then $g=O(h)$	FALSE	if $g=O(f)$ and $f=O(h)$ then $g=O(h)$

Exercises

Running time $T(n)$ of processing n data items with a given algorithm is described by the recurrence:

$$
T(n)=k \cdot T\left(\frac{n}{k}\right)+c \cdot n ; \quad T(1)=0 .
$$

Derive a closed form formula for $T(n)$ in terms of c, n, and k. What is the computational complexity of this algorithm in a "Big-Oh" sense? Hint: To have the well-defined recurrence, assume that $n=k^{m}$ with the integer $m=\log _{k} n$ and k.

Exercises

$$
\begin{aligned}
T\left(k^{m}\right) & =k \cdot T\left(k^{m-1}\right)+c \cdot k^{m} \\
k \cdot T\left(k^{m-1}\right) & =k^{2} \cdot T\left(k^{m-2}\right)+c \cdot k^{m} \\
\cdots & \cdots \\
k^{m-1} \cdot T(k) & =k^{m} \cdot T(1)+c \cdot k^{m} \quad \text { so that } T\left(k^{m}\right)=c \cdot m \cdot k^{m}
\end{aligned}
$$

$T(n)=c \cdot n \cdot \log _{k} n$.
$O(n \log n)$.

Exercises

1- Let processing time of an algorithm of Big-Oh complexity $O(f(n))$ be directly proportional to $f(n)$. Let three such algorithms A, B, and C have time complexity $\mathrm{O}(\mathrm{n} 2), \mathrm{O}(\mathrm{n} 1.5)$, and $\mathrm{O}(\mathrm{n} \log \mathrm{n})$, respectively. During a test, each algorithm spends 10 seconds to process 100 data items. Derive the time each algorithm should spend to process 10,000 items.

2- Software packages A and B have processing time exactly $T_{E P}=3 n^{1.5}$ and $T_{W P}=0.03 n^{1.75}$, respectively. If you are interested in faster processing of up to $n=10^{8}$ data items, then which package should be choose?

Exercises

1- Let processing time of an algorithm of Big-Oh complexity $O(f(n))$ be directly proportional to $f(n)$. Let three such algorithms A, B, and C have time complexity $O(n 2), O(n 1.5)$, and $O(n \log n)$, respectively. During a test, each algorithm spends 10 seconds to process 100 data items. Derive the time each algorithm should spend to process 10,000 items.

	Complexity	Time to process 10,000 items
A1	$O\left(n^{2}\right)$	$T(10,000)=T(100) \cdot \frac{10000^{2}}{1000^{2}}=10 \cdot 10000=100,000 \mathrm{sec}$.
A2	$O\left(n^{1.5}\right)$	$T(10,000)=T(100) \cdot \frac{10000^{1.5}}{100.5}=10 \cdot 1000=10,000 \mathrm{sec}$.
A3	$O(n \log n)$	$T(10,000)=T(100) \cdot \frac{1000 \log 10000}{100 \log 100}=10 \cdot 200=2,000 \mathrm{sec}$.

Exercises

2- Software packages A and B have processing time exactly $T_{E P}=3 n^{1.5}$ and $T_{w p}=0.03 \mathrm{n}^{1.75}$, respectively. If you are interested in faster processing of up to $\mathrm{n}=10^{8}$ data items, then which package should be choose?

In the Big-Oh sense, the package \mathbf{A} is better. But it outperforms the package B when $T_{\mathrm{A}}(n) \leq T_{\mathrm{B}}(n)$, that is, when $3 n^{1.5} \leq 0.03 n^{1.75}$. This inequality reduces to $n^{0.25} \geq 3 / 0.03(=100)$, or $n \geq 10^{8}$. Thus for processing up to 10^{8} data items, the package of choice is \mathbf{B}.

