Algorithms & Data Structure |

Asymptotic Analysis

(e] Jaladl) —

Asymptotic Analysis

Outline:

we will look at:
— Justification for analysis
— Quadratic and polynomial growth
— Landau symbols
— Big-® as an equivalence relation
— Little-o as a weak ordering

Background

Suppose we have two algorithms, how can we tell which
IS better?

We could implement both algorithms, run them both
— EXxpensive and error prone

Preferably, we should analyze them mathematically
— Algorithm analysis

Quadratic Growth

Consider the two functions
f(n)=n?and g(n) =n?-3n+2
Around n =0, they look very different

Quadratic Growth

Yet on the range n = [0, 1000], they are
(relatively) indistinguishable:

1000000 —
200000 —
600000 —
400000 —

200000 —

T T T T T T T T T 1
1] 200 400 600 200 1000

Quadratic Growth

The absolute difference is large, for example,
f(1000) = 1 000 000
g(1000) = 997 002

but the relative difference is very small

‘f(lOOO) —9W000) _ 1 102998 < 0.3%

f(1000)
and this difference goes to zero as n — «

Polynomial Growth

To demonstrate with another example,
f(n)=n® and g(n) = n®—-23n°+193n*-729n3+1206n%— 648n
Around n =0, they are very different

1000 —

200 —

Al —

200 —

| Jﬁhﬁ/
1 2 3 < o
»

Polynomial Growth

Still, around n = 1000, the relative difference Is
less than 3%

1.2 10%% o
2. = 1017
6. x 1017
4. = 1017

2 = 1017

' T ' T T T T T 1
0 200 400 é00 =200 1000

Polynomial Growth

The justification for both pairs of polynomials
being similar is that, in both cases, they each
had the same leading term:

n? in the first case, n® in the second

Suppose however, that the coefficients of the
leading terms were different
— In this case, both functions would exhibit the

same rate of growth, however, one would always
be proportionally larger

Asymptotic Analysis

e Goal: to simplify analysis of running time by getting
rid of “details”, which may be affected by specific
implementation and hardware
— like “rounding”: 1,000,001 =~ 1,000,000
— 3n?~n?

e Capturing the essence: how the running time of an

algorithm increases with the size of the input in the
limit.

— Asymptotically more efficient algorithms are best for all
but small inputs

Asymptotic Analysis

Given an algorithm:

— We need to be able to describe these values
mathematically

— We need a systematic means of using the description
of the algorithm together with the properties of an
associated data structure

— We need to do this in a machine-independent way

For this, we need Landau symbols and the
assoclated asymptotic analysis

Asymptotic Notation - Landau Symbols

 The “big-Oh” O-Notation
— asymptotic upper bound

— f(n) = O(g(n)), if there exists o
constants cand n,, s.t. f(n) <cg(n)| »
forn=n, E

— f(n) and g(n) are functions over -
non-negative integers o

Input Size

* Used for worst-case analysis

* The function f(n) has a rate of
growth no greater than that of g(n)

Asymptotic Notation (2)

* The “big-Omega” (Q—Notation
— asymptotic lower bound

— f(n) = Q(g(n)) if there exists
constants c and n, s.t. ¢ g(n) < f(n)
forn=>n,

 Used to describe best-case
running times or lower bounds
of algorithmic problems

— E.g., lower-bound of searching in i _
an unsorted array is Q2(n). Input Size

f(n)
c-g(n)

ime

Running

Asymptotic Notation (3)

e Simple Rule: Drop lower order terms and
constant factors.
—50nlognisO(nlogn)
—7n -3 is O(n)
— 8n?%log n + 5n?% + nis O(n? log n)

* Note: Even though (50 n log n) is O(n~), it is
expected that such an approximation be of as
small an order as possible

Asymptotic Notation (4)

The “big-Theta” ®—Notation
— asymptoticly tight bound

— f(n) = ©(g(n)) if there exists
constants ¢, ¢, and n,, s.t. ¢,
g(n) <f(n) <c, g(n) for n > n,

f(n) = ®(g(n)) if and only if f(n)
= (Jg(n)) and f(n) = Q(g(n))
O(f(n)) is often misused instead
of O(f(n))

The function f(n) has a rate of
growth equal to that of g(n)

Running

ime

c,-g(n)
f(n)

¢, -g(n)

o

Input Size

®—Notation: Exercise

sn* —3n = O(n?)

We must determine positive constants c¢,, ¢,, and n,:
l

cin? < 5112 — 3n < ¢on?

for all n > ng. Dividing by n? yields
goyn-y

By choosing c¢,=1/14, c¢,=1/2 and n,=7.
6n°> # O(n?)

Suppose for the purpose of contradiction that c¢,, and n,exists such that: 6n° < c,n?
forall n = ny. Dividing by n?yields: n < ¢,/6
Which cannot possibly hold for arbitrarily large n, since c, is constant.

/ AL AL\ \ MEMM NM

Asymptotic Notation (5)

* Two more asymptotic notations
— "Little-Oh" notation f(n)=0(g(n))
non-tight analogue of Big-Oh

* For every ¢, there should exist n,, s.t. f(n) < c g(n) forn > n,

e Used for comparisons of running times. If f(n)=o(g(n)), it is said
that g(n) dominates f(n).

”Big-Oh" : For some c, there should exist n,, s.t. f(n) < c g(n) for n > n,
— "Little-omega" notation f(n)=w(g(n))
non-tight analogue of Big-Omega

Asymptotic Notation (6)

* Analogy with real numbers
—f(n)=0(g(n)) = f<g
—fln)=Q(g(n))= f=g
—fln)=0©(g(n))= f=g
—fln)=o0(g(n)) = f<g
—fln)=alg(n)) = f>g

e Abuse of notation: f(n) = O(g(n)) actually
means f(n) €0(g(n))

Landau Symbols

Graphically, we can summarize these as follows:

We say

_ O(g(n)) Q(g(n))
. = oem) o) olgn)
If () _ e S——

0 D<c¢c<oo o0

n->e g(n)

Landau Symbols

Some other observations we can make
are:

f(n) = ©(g(n)) < g(n) = B(f(n))
f(n) = O(g(n)) & g(n) = Q(f(n))
f(n) = o(g(n)) < g(n) = (f(n))

Big-® as an Equivalence Relation

If we look at the first relationship, we notice that
f(n) = ®(g(n)) seems to describe an equivalence
relation:

1. f(n) =©(g(n)) if and only if g(n) = O(f(n))

2. f(n) =0O(f(n))

3. Iff(n) =®(g(n)) and g(n) = B(h(n)), it follows that

f(n) = ®(h(n))

Consequently, we can group all functions into
equivalence classes, where all functions within
one class are big-theta ® of each other

Big-® as an Equivalence Relation

For example, all of
n? 100000 n°—-4n+19 n‘ + 1000000
323n°—4nliIn(n)+43n+10 42n? + 32
n?+ 61 n In?(n) + 7n + 14 In3(n) + In(n)
are big-® of each other

E.g.,42n?+32=0(323n°-4nIn(n)+43n+10)

Big-® as an Equivalence Relation

The most common classes are given names:

O(1) constant
®(In(n)) logarithmic
®(n) linear

O(n In(n)) “‘nlogn”
®(n?) guadratic
®(n3) cubic

2", en, 4" .. exponential

Logarithms and Exponentials

Recall that all logarithms are scalar multiples of each

other
— Therefore log,(n)= @(In(n)) for any base b

Alternatively, there Is no single equivalence class for
exponential functions: im & —1im(2) —o
— If1<a<hb,

— Therefore a" = o(b")

However, we will see that it is almost universally
undesirable to have an exponentially growing function!

R LR\ ‘MN ‘ﬁm ,M

Logarithms and Exponentials

Plotting 2", e", and 4" on the range [1, 10]
already shows how significantly different
the functions ¢ 1+

2 w107 1

Note:
210 = 1024 Mmj_'
ell~ 22026

410 =1 048 576

Little-o as a Weak Ordering

We can show that, for example

In(n)=o0(nP)
forany p>0
Proof. Using I'HOpital’s rule, we have
Innh) .. 1/n . 1 1.
lim ——==1Iim =lim——==—Ilimn™* =0
n—o0 n N—o0 pnp‘l n—oo pnp p N—o0

Conversely, 1 =o(In(n))

Little-o as a Weak Ordering

Other observations:

— If p and g are real positive numbers where p <q, it
follows that

nP = o(n9)

— For example, matrix-matrix multiplication is ®(n?)
but a refined algorithm is ®(n'9(") where 1Ig(7) =
2.81

— Also, nP = o(In(n)nP), but In(n)nP = o(n)
* NP has a slower rate of growth than In(n)nP, but
* In(n)nP has a slower rate of growth than nd for p < g

/ AL AL\ \ MEMM NM

Little-o as a Weak Ordering

If we restrict ourselves to functions f(n)
which are ®(nP) and ®(In(n)nP), we note:
— It I1s never true that f(n) = o(f(n))
— If f(n) # ®(g(n)), It follows that either
f(n) = o(g(n)) or g(n) = o(f(n))
— If f(n) = o(g(n)) and g(n) = o(h(n)), it follows that
f(n) = o(h(n))

This defines a weak ordering!

Little-o as a Weak Ordering

Graphically, we can shown this
relationship by marking these against the

real line
O(In(n)) ©(nln(n))
o(1) e(n) (1)

|

O(n'oz0) O(n'o2(7)

Algorithms Analysis

We will use Landau symbols to describe the complexity of
algorithms

— E.g., adding a list of n doubles will be said to be a ®(n) algorithm

An algorithm is said to have polynomial time complexity If its
run-time may be described by O(n%) for some fixed d >0

— We will consider such algorithms to be efficient

Problems that have no known polynomial-time algorithms are

said to be intractable

— Traveling salesman problem: find the shortest path that visits n
cities

— Best run time: ©(n%2")

Algorithm Analysis

In general, you don’t want to implement exponential-time or
exponential-memory algorithms

— Warning: don'’t call a quadratic curve “exponential”,
either...please

Exercises

Expression

Dominant term(s)

5+ 0.001n2 +0.025n

500n + 100n!-> + 50n logq n

5 5
0.3n L 5ntd 1925 . pL7

Exercises

=2
Expression Dominant term(s) of...)
5 +0.001n° + 0.025n 0.001n° O(n?)
500m 4+ 100nt5 + 50n log, n 100n 1t O(n'?)
0.3n + 5nt> +2.5. 17 2.5n " O(n*™)

Exercises

Statement

Is it TRUE
or FALSE?

If it is FALSE then write
the correct formula

Rule of sums:
O(f +g) = O(f) + O(g)

Rule of products:

O(f-9) =0(f) - O(g)

Transitivity:
if §=0(f)and h=6f)
then g = O(h)

Exercises

Statement

Is it TRUE
or FALSE?

If it
write
the correct formula

is FALSE then

Rule of sums: . O(f+g) =

O(f +9) = O(f) + O(g) | FALSE max {O(f). O(g)}
Rule of products: I

O(f -9)=0(f)-O(g) | TRUE

Transitivity: if g =O(f) and
if g=0O(f) and h = O(f) | FALSE f =0(h) then

then g = O(h)

g=0(h)

Exercises

Running time 7'(n) of processing n data items with a given algorithm is
described by the recurrence:

n

Tl = b-T (k

)—l—c-n; (1) =1

Derive a closed form formula for 7'(n) in terms of ¢, n, and k. What is the
C.omp’uta.tional complexity of this algorithm in a “Big-Oh” sense? Hint:
To have the well-defined recurrence, assume that n = £™ with the integer
m = log; n and k.

Exercises

TE™) = k- TE* L+ k™
E-T(k™Y) = kK- -TE™) +c-k™

L

E™-T(1)+c- k™ sothat T(K™)=c-m-k™

T(n)=¢ -7 -log .

O(nlogn).

Exercises

1- Let processing time of an algorithm of Big-Oh complexity O(f(n)) be
directly proportional to f(n). Let three such algorithms A, B, and C
have time complexity O(n2), O(n1.5), and O(n log n), respectively.
During a test, each algorithm spends 10 seconds to process 100 data
items. Derive the time each algorithm should spend to process 10,000
items.

2- Software packages A and B have processing time exactly T, = 3nt-
and T,,» = 0.03n1-7>, respectively. If you are interested in faster
processing of up to n = 108 data items, then which package should be
choose?

Exercises

1- Let processing time of an algorithm of Big-Oh complexity O(f(n)) be
directly proportional to f(n). Let three such algorithms A, B, and C
have time complexity O(n2), O(n1.5), and O(n log n), respectively.
During a test, each algorithm spends 10 seconds to process 100 data
items. Derive the time each algorithm should spend to process 10,000

items.

Complexity | Time to process 10,000 items

1600

A3 | O(nlogn) | T(10,000) = T(100) - 108:2§ iggoo

Al | O(n?) T(10,000) = T(100) - %’-: 10 - 10000 = 100, 000 sec.
A2 | O(n'?) T(10,000) = T(100) - 199992 _ 1. 1000 = 10,000 sec.

= 10 - 200 = 2, 000 sec.

Exercises

2- Software packages A and B have processing time exactly T¢, = 3ni-
and T,,» = 0.03n1-7>, respectively. If you are interested in faster
processing of up to n = 102 data items, then which package should be
choose?

In the Big-Oh sense, the package A is better. But it outperforms the
package B when T (n) < Tg(n), that is, when 3n'®> < 0.03n'-7°. This in-
equality reduces to n%?®> > 3/0.03(= 100), or n > 10%. Thus for processing
up to 10® data items, the package of choice is B.

